
A Natural Language Interface to the NRL-SSC
Geospatial Information DataBase*

Kenneth Wauchope and Stephanie S. Everett

Navy Center for Applied Research in Artificial Intelligence (NCARAI)
Naval Research Laboratory, Code 5512

Washington, DC 20375-5337

INTRODUCTION

The Geospatial Information DataBase (GIDB™) developed by the DMAP (Digital Mapping,
Charting & Geodesy Analysis Program) group at the Naval Research Laboratory’s Stennis
(Mississippi) Space Center facility is a Geographic Information System that provides networked,
GUI-based query and display of geospatial data accessed from a variety of servers via an object-
oriented database approach [McCreedy et al. 2002]. At the time of the work described in the
current report (FY2001), GIDB was implemented as a Java applet that could be downloaded in a
Web browser from an NRL-SSC server and used to access any of over sixty geospatial databases
at that facility via a Java servlet called WMT (World Map Tools). Since GIDB was being
integrated into the U.S. Marine Corps’ Capable Warrior exercise and our Speech and Natural
Language group at NCARAI had recently completed development of a speech interface to
Capable Warrior’s Battlespace Visualization Tool [Wauchope 2000], we proposed to provide a
natural language (NL) interface to GIDB based on our previous experience developing the
InterLACE natural language interface to a military cartographic database [Wauchope 1996]. This
report describes the technical details of that implementation.

 THE GIDB APPLET

Figure 1 shows a screen shot of the GIDB applet displaying a portion of the geospatial database
for the MOUT (urban warfare practice area) at the Marine Corps’ Camp LeJeune, NC. The GUI
has just been used to highlight all the public (i.e. non-commercial) buildings such as schools and
churches, and the user is about to submit a followup request to be shown the subset of those
buildings that have flat roofs. This example exhibits several of the limitations of using traditional
GUIs to perform database queries of this sort. First, it may not be immediately obvious to the
user that the Theme:Feature Class pair Population:Buildings Areas represents non-commercial
buildings whereas the distinct Industry:Building Areas refers to commercial buildings. Second,
two separate queries must be performed to get the final desired result, the first obtaining the set of
all public buildings and the second (via the Feature:Value pair Structure Shape of Roof:Flat)
the subset of those with flat roofs. The user is not able to view all buildings both public and
private with flat roofs in a single display, since the two Feature Classes (though similarly named)
belong to two different Themes and so must be queried and displayed separately. As a final
example, to locate all houses of worship the user would query public buildings for the feature-
value pair Building Function Category:House of Worship, but to locate a church would instead
query for the very different pair House of Worship Type:Church.

* AIC Technical Report AIC-03-002, Navy Center for Applied Research in Artificial Intelligence, Naval
Research Laboratory, Code 5512, 4555 Overlook Ave. SW, Washington DC 20375-5337, March 2003.

A natural language interface has two primary advantages over this sort of traditional GUI-based
database query methodology. First, the user is not constrained to the possibly arbitrary hierarchy
of field names implemented in any particular database, but can use more natural terminology (e.g.
buildings, public buildings, houses of worship, churches) which the system then automatically
maps to the relevant combination of database classes, features and values. Second, natural
language syntax allows the nesting of multiple class and/or attribute-value constraints into a
single query (Which public buildings with flat roofs are within 30 meters of the church?) whereas
the GIDB applet requires three separate queries to obtain that result: show all public buildings
with flat roofs, show all churches, and then find all results from query 1 that are within 30 meters
of the results from query 2.

Fig. 1 – GIDB Applet displaying Population: Buildings Areas

SYSTEM ARCHITECTURE

The initial technical problem we encountered in this project was to find a way to link our natural
language processor (written in Common LISP, an interpreted programming language) to Java
(another interpreted language) so as to remotely connect to the WMT Java servlet for access to
the geospatial databases at Stennis. While we had considerable prior experience linking machine-
executable object code into LISP using its foreign function interface, Java bytecodes are not
directly executable but require the presence of a Java virtual machine to interpret them. An
alternative with which we also had considerable experience was to have the NL processor and
target application communicate by passing strings over a TCP/IP socket connection, but that

would have required writing a fairly sophisticated command interpreter for invoking Java
functions and returning the indices of stored Java objects to serve as the referents of noun phrases
and pronouns on the LISP side. Fortunately, Franz Inc. had just the previous year released a new
Java linking package for Allegro Common LISP called jLinker, which proved to be exactly what
was needed by allowing direct LISP calls to Java functions and LISP pointers to Java objects.

Fig. 2 – GIDB NL Interface System Architecture

Figure 2 shows the resulting system architecture. On the Stennis server, the GIDB applet
accesses the geospatial databases via the WMT Java servlet. At NCARAI, the same servlet is
accessed remotely over the network by a block of Java code written using GIDB library functions
and interfaced to the NL processor using the jLinker package. Thus the natural language
interface does not interact with the GIDB applet itself, although implementing such a multimodal
interface would have been a desirable followup project.

NATURAL LANGUAGE INTERFACE

The NL interface is built using NAUTILUS [Wauchope 1994], a general-purpose NL processor
developed in-house at NCARAI that has been used to interface to a wide variety of DoD-
sponsored applications including an air combat command and control simulation, a Virtual
Reality tactical air warfare display, two map-based military simulation systems, and NRL’s
semiautonomous mobile robots. Of the map-based interfaces, the one most relevant to the current
project was the InterLACE multimodal interface to a large, real-world cartographic database of
(then) East Germany that included such spatial features as towns, roads, lakes, waterways and
powerlines. InterLACE provides full NL database query capability that can answer questions
such as What’s the nearest small town to Leipzig? and Are there any airstrips northwest of there?
Because of its close similarity to a Geographic Information System, a considerable amount of the
InterLACE grammar and lexical semantics was thus directly portable to the GIDB application.

For demonstration purposes we chose as our domain the UVMMOUT geospatial database
(Marine Corps Camp LeJeune, NC) as being highly representative as well as appropriate for our

 NRL Stennis web server

GIDB
applet

WMT
servlet

NIMA
DBs

NCARAI remote client

NLP
(lisp)

GIDB
code
(java)

sponsors at the Marine Corps Warfighting Laboratory, Quantico, VA. This database represents
eight Themes each containing two to four Feature Classes and covering a total of over fifty
Features, each taking up to a dozen possible values. The vocabulary for the interface consists of
just over 570 words, mapping to approximately 230 lexical semantic classes.

The next step in constructing a NAUTILUS interface is the writing of so-called Translation
Functions, which are LISP routines that define the mapping from NAUTILUS logical predicates
to application-specific codes called Interface Functions. The GIDB interface required the
definition of approximately 90 Translation Functions such as GET- DI STANCE- FROM (How far
is the church from City Hall?), HAVE- ROOF (Does it have a pitched roof?) and GET- HEI GHT
(What’s the height of the US Embassy?), many of which were modeled in large part after
InterLACE predecessors.

The final and most labor-intensive step required to interface NAUTILUS to a new application is
the coding of the Interface Functions. In this project we first map the Translation Functions to
about thirty lower-level LISP procedures that handle the jLinker interactions between LISP and
the roughly twenty Interface Functions, which are comprised of approximately 500 lines of Java
code. These include such routines as di st Bet ween (find the shortest Great Circle distance
between two points on the coordinate vectors of two database objects) and at t val (see if a
database object has an attribute of a given name with a given value). In an earlier cut of the
system we experimented with writing most of the Interface Function code in LISP jLinker calls
and less in pure Java, but found that runtime speed increased substantially the less we utilized the
slow jLinker interface.

The following example illustrates the successive steps by which NAUTILUS processes the
simple query How tall is the church?

1. Regularized parse tree:

(ASKWH (WHI CH N6 TALL)
 (PRESENT BE (THE N5 CHURCH SI NGULAR) VAR))

2. Case frame semantic interpretation:

 (ASKWH (WHI CH N1 (: CLASS HEI GHT))
 (PRESENT #: V9155 (: CLASS GET- HEI GHT)
 (: CARRI ER(THE N0(: CLASS CHURCH) SI NGULAR))
 (: POSSESSED N1)))

3. Quantified logical form:

 (TELL (SETOF X3 (SETOF N1 HEI GHT)
 (EXI STS! X4 (SETOF N0 CHURCH)
 (GET- HEI GHT : CARRI ER X4 : POSSESSED X3))))

4. Discourse entity (reference resolution) for the noun phrase the church:

(N0 SI NGULAR CHURCH : CARRI ER
 #<TRAN- STRUCT Java I P 1077, 121086247
 Wmt Modul e. Vect or Feat ur e>)

Note in step 4 that the noun phrase’s referent (the final element in the discourse entity list) is the
jLinker representation of the actual Java object downloaded from the Stennis Java servlet. The
following is an abbreviated LISP trace of the steps involved in that dereferencing process.

1: (TI NSEL- WMT- DEREFERENCE CHURCH NI L)
 2: (WMT- DOWNLOAD “ Popul at i on” “ Bui l di ngs Ar eas”)
 2: r et ur ned #<TRAN- STRUCT Java I A1 1043, 121086247, 109
 [Lwmt Modul e. Vect or Feat ur e; >
 2: (WMT- FI ND- MATCHI NG- VALS
 #<TRAN- STRUCT Java I A1 1043, 121086247, 109
 [Lwmt Modul e. Vect or Feat ur e; >
 “ House of Wor shi p Type” “ Chur ch”)
 2: r et ur ned (#<TRAN- STRUCT Java I P 1077, 121086247
 Wmt Modul e. Vect or Feat ur e>)

As the trace shows, NAUTILUS first determines that semantic class CHURCH corresponds to an
object with Theme “ Popul at i on” and Feature Class “ Bui l di ngs Ar eas” . Since that
particular block of objects has not yet been downloaded from the database server, NAUTILUS
does so and caches the result locally to be used in resolving subsequent references to other public
buildings. It then searches the resulting vector of objects for one or more with a “ House of
Wor shi p Type” feature having value “ Chur ch” , and returns the result. Since there is only
one such matching object, the singular definite NP the church succeeds without raising a number
error, allowing processing to continue.

The next step is the evaluation of the logical form in step 3, which roughly translated says “Tell
me all the pairings [SETOF] of the attribute HEI GHT with the height value [function GET-
HEI GHT] of the unique object CHURCH.” First, the function GET- HEI GHT is evaluated in the
context of the logical form. GET- HEI GHT is defined by the following two LISP Translation
Functions:

(def un GET- HEI GHT (&key car r i er possessed)
 (l et ((val (HEI GHT- OF car r i er possessed)))
 (i f (number p val) (f or mat ni l " ~A met er s" val) val)))

(def un HEI GHT- OF (car r i er possessed)
 (when (consp possessed) (set q possessed (f i r st possessed)))
 (l et * ((val (case possessed
 (pr edomi nant - hei ght
 (at t r i b car r i er " Pr edomi nant Hei ght "))
 (hei ght - above- sur f ace- l evel
 (at t r i b car r i er " Hei ght Above Sur f ace Level "))
 (hei ght
 (or (at t r i b? car r i er " Pr edomi nant Hei ght ")
 (at t r i b? car r i er " Hei ght Above Sur f ace Level ")
 ; ; Ar mi st i ce Li ne " Name 4" at t r i but e = " HEI GHT = 1. 6"
 (at t r i b? car r i er " Name 4")
 (undef i ned- at t r i but e " Hei ght " car r i er))))))
 (i f (st r i ngp val) (r ead- f r om- st r i ng val) val)))

In the context of our current example, the Translation Function call is

(GET- HEI GHT
 (#<TRAN- STRUCT Java I P 1077, 121086247 Wmt Modul e. Vect or Feat ur e>)
 ’ HEI GHT)

which in turn invokes function HEI GHT- OF to get the numeric value of the object’s height.
Since height can refer to two possible attributes in this particular database (the predominant
height of a grove of trees, or the height above ground level of a building, landmark or
obstruction), HEI GHT- OF makes the call

(at t r i b?
 (#<TRAN- STRUCT Java I P 1077, 121086247 Wmt Modul e. Vect or Feat ur e>)
 " Hei ght Above Sur f ace Level ")

only after first determining that the church object does not possess a “ Pr edomi nant
Hei ght ” attribute. at t r i b? is a low-level routine that simply tests a database object for an
attribute of a given name, returning the attribute’s value if present and NI L otherwise. It is
defined as follows:

(def un at t r i b? (obj name)
 (and (t ypep obj ' TRAN- STRUCT)
 (l et ((r esul t (j cal l (j met h " WMTi nt f uns" " at t r i b" 2)
 NLI obj name)))
 (i f (equal r esul t " NI L")
 ni l
 r esul t))))

at t r i b? uses the jLinker interface to call the Interface Function at t r i b, a Java method in
the WMTi nt f uns class and defined as follows:

publ i c j ava. l ang. Obj ect at t r i b(Wmt Modul e. Vect or Feat ur e obj ,
 j ava. l ang. St r i ng name) {
 Wmt Modul e. At t r i but e[] at t s = obj . at t r i but es;
 f or (i nt i = 0; i < at t s. l engt h; i ++) {
 Wmt Modul e. At t r i but e at t = at t s[i] ;
 i f (at t . name. equal s(name)) r et ur n(at t . val ue) ;
 }
 r et ur n " NI L" ;
 }

From this point on, all Java methods are imported from classes provided by the GIDB servlet
developers at Stennis. Having obtained a “ Hei ght Above Sur f ace Level ” value of 30,
at t r i b passes this value back to the Translation Function GET- HEI GHT which formats it as
the string “ 30 met er s” . Returning to the evaluation of the Logical Form

(TELL (SETOF X3 (SETOF N1 HEI GHT)
 (EXI STS! X4 (SETOF N0 CHURCH)
 (GET- HEI GHT : CARRI ER X4 : POSSESSED X3))))

the outermost SETOF operator now pairs up the attribute HEI GHT with this value to create the
list structure (HEI GHT “ 30 met er s”) . Finally, the TELL performative is responsible for
reporting this value back to the user in an English-like syntax. Since NAUTILUS was designed
primarily as an interpreter of natural language input, its built-in NL output facilities are
deliberately quite spare – the placeholder definition of TELL currently just generates the sentence
fragment “Height: 30 meters” as its reply. While replies of this sort are concise and “natural” in
the sense of not being annoyingly verbose, there are two advantages to having the system instead
respond in complete English sentences. First, it reassures users that their queries have been
correctly understood and interpreted, and second, it “primes” users to avoid using sentence
fragments in their own queries since such inputs are more difficult for the NL processor to

interpret unambiguously. In the InterLACE project we used a full-fledged semantically-based
NL generation system FUF/SURGE [Eldahad 1992, Robin 1994] to provide the option of full-
sentence query responses. In the current project we instead opted to implement a simpler,
template-based syntactic approach to NL generation, described next.

NATURAL LANGUAGE GENERATION COMPONENT

The NL generation component accesses the parse tree of the user’s input query to formulate a
full-sentence response that echoes the user’s vocabulary and phrase structure. For example, the
system responds to the query How tall is the church? with “The church is 30 meters tall” , but
answers the query What is the height of the church? with “The height of the church is 30 meters” .
Figure 3 shows some example input and response patterns. Angle-bracketed symbols represent
the words subsumed by particular nodes in the query parse. For example <S-TPOS> represents
the contents of the S (SUBJECT) node minus the contents of its TPOS (determiner) child node,
<NEG> represents an optional not, and <O> represents the OBJECT node (verb complement).
Thus for the query Are any warehouses within 300 meters of the church? the determiner any is
stripped from the sentential subject any warehouses (and the noun warehouse singularized) to
generate the response “Yes, one warehouse is within 300 meters of the church” . If the reply is
negative, its form depends on whether the input query was itself negative: Are any warehouses
within 30 meters of the church? generates “No, none of the warehouses is within 30 meters of the
church” , but the query Are any warehouses not within 300 meters of the church? generates “No,
all warehouses are within 300 meters of the church” .

Query Pattern Response Pattern
Are any (of the) <S> <NEG> <O>
Are any (of the) <S> <O>
Are any (of the) <S> not <O>

“Yes, [#] <S-TPOS> is/are <NEG> <O>”
“No, none of the <S-TPOS> is <O>”
“No, all <S-TPOS> are <O>”

Fig. 3 – Sample Query and Response Patterns for Natural Language Generator

CONCLUSIONS

This project demonstrates the feasibility of interacting with a Java servlet-based Geospatial
Information System back end via a natural language front end. Natural language and graphical
interfaces offer complementary ways of accessing this information: the graphical interface is
particularly useful when the objects under consideration are physically adjacent and fully visible
in the display, while the NL interface is more powerful at accessing sets of objects based on
symbolic descriptions of their types and attributes. We believe the ideal interface to such a
system would be multimodal, with both access options available simultaneously and mutually
integrated.

REFERENCES

M. Eldahad [1992]. Using Argumentation to Control Lexical Choice: A Functional Unification
Implementation. Ph.D. thesis, Computer Science Department, Columbia University.

F. McCreedy, R. Ladner, R. Wilson, J. Breckenridge, S. Carter, H. Mesick, D. Olivier, K. Shaw,
C. Baribault, T. Lovitt [2002]. System Documentation for the Geospatial Information DataBase
(GIDB™) System Server Version 2.0, NRL/MR/7440--02-8275, June 24, 2002.

J. Robin [1994]. Revision-Based Generation of Natural Language Summaries Providing
Historical Background. Ph.D. thesis, Computer Science Department, Columbia University.

K. Wauchope [1994]. "Eucalyptus: Integrating Natural Language Input with a Graphical User
Interface," NRL Technical Report NRL/FR/5510--94-9711, Washington, DC: Naval Research
Laboratory, 1994. http://www.aic.nrl.navy.mil/papers/1994/AIC-94-007.ps

K. Wauchope [1996]. Multimodal interaction with a map-based simulation system. NCARAI
Technical Report AIC-96-027, Naval Research Laboratory, Washington DC, July 1996.
http://www.aic.nrl.navy.mil/papers/1996/AIC-96-027.pdf

K. Wauchope [2000]. Voice control for the Battlespace Visualization Tool. NCARAI Technical
Report AIC-00-005, Naval Research Laboratory, Washington DC, April 2000.
http://www.aic.nrl.navy.mil/papers/2000/AIC-00-005.pdf

